Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus

نویسندگان

  • Fadhel Alsaffar
  • Sarah Alodan
  • Abdul Alrasheed
  • Abdulrahman Alhussain
  • Noura Alrubaiq
  • Ahmad Abbas
  • Moh. R. Amer
چکیده

Layered black phosphorus has drawn much attention due to the existence of a band gap compared to the widely known graphene. However, environmental stability of black phosphorus is still a major issue, which hinders the realization of practical device applications. Here, we spatially Raman map exfoliated black phosphorus using confocal fast-scanning technique at different time intervals. We observe a Raman intensity modulation for , B2g, and modes. This Raman modulation is found to be caused by optical interference, which gives insights into the oxidation mechanism. Finally, we examine the fabrication compatible PMMA coating as a viable passivation layer. Our measurements indicate that PMMA passivated black phosphorus thin film flakes can stay pristine for a period of 19 days when left in a dark environment, allowing sufficient time for further nanofabrication processing. Our results shed light on black phosphorus degradation which can aid future passivation methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry.

Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)-a layered two-dimensional semiconductor-exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent ...

متن کامل

Chemically exfoliating large sheets of phosphorene via choline chloride urea viscosity-tuning.

Exfoliation of two-dimensional phosphorene from bulk black phosphorous through chemical means is demonstrated where the solvent system of choice (choline chloride urea diluted with ethanol) has the ability to successfully exfoliate large-area multi-layer phosphorene sheets and further protect the flakes from ambient degradation. The intercalant solvent molecules, aided by low-powered sonication...

متن کامل

Effective passivation of exfoliated black phosphorus transistors against ambient degradation.

Unencapsulated, exfoliated black phosphorus (BP) flakes are found to chemically degrade upon exposure to ambient conditions. Atomic force microscopy, electrostatic force microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy are employed to characterize the structure and chemistry of the degradation process, suggesting that O2...

متن کامل

Reliable passivation of black phosphorus by thin hybrid coating.

Black phosphorus (BP) possesses several extraordinary physical properties, which include in-plane anisotropy, thickness dependent direct bandgap and high carrier mobility. These physical properties make BP highly desirable from the point of view of fundamental science and modern optoelectronics applications. The excitement about this material has always been accompanied by unreserved skepticism...

متن کامل

Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017